An approach to SaaS multi-tenant app architecture in AWS (Version 1)
Customers choose their region-specific, allowing the data to abide to the legal
terms per region.

with same architecture

Route 53 4 Goes to another region
-

Logs + Production
source code

Web/App Web/App Web/App
Server (EBS) Server (EBS) Server (EBS)

HA Proxy (LB)

HA Proxy (LB)

Security:

-Layer 1:
ElastiCache Web/App Server

(EBS) accepts

port 80/443

only + (using
MVC
architecture +
business rules to
communicate
with model/DB)
-Layer 2:
Database does
not accept any
external
requests (port
3306)

-Specific security
groups at each

%

Snapshots

Sync layer
SNS for notifications about SQS to help in queening SWF to automate signup process that
EC2, RDS, ElastiCache, spot threads/requests between works and decides upon communicating
instances for cron,... different controllers with control panel, CRM, Ticketing/Billing
Svstem
SES to handle all email simpleDB to help EC2 CloudWatch to alert on
requests to be sent from launch configuration and heavy/low utilization of EC2,
tenants assist in monitoring their RDS alarms, monitoring,...
status

CloudFormation is used to
replicate this architecture
into another region

eliematta.com



General information:

-The first split is handled on the R53 DNS (eg: companyname.website.com)

-ELB detects high latency and redirects to healthy instances while also being
resilient for fault tolerance.

-Usage of Elastic IPs in case of replacing a Web/App server via API

-The second split of tenant in this region is handled on the App layer (which will
help depicting the rightful data to show from ElastiCache and RDS)

-Web/App servers are EBS-backed for launching instances faster and for high
[/0 EBS-Optimized (between EC2 and EBS), they can be stopped and the EBS can
be used as HDD. In other cases, negligible cost savings while using instance-store
backed AMI is not preferred.

-S3 volume saves the data in one region, contains production source code, css,
images, js, logs, snapshots,...

-CloudFront distributes data geographically (multiple regions) from an Origin
Server, which is in this case, S3.

-Auto Scaling is set to scale out when usage reaches 80%, scales back when
usage reaches 10%

-ElastiCache uses Auto Discovery that will help the App to know the rightful
owner of the data vis-a-vis of the requester using DNS/CNAME for each of the
cache node endpoints.

-Data is persisted in RDS Master cluster (tenant specific RDS) and synced with
Slave for HA to another AZ.

-Fault tolerant system is taken into consideration as there is no single point of
failure, alarms/notifications are set and components are loosely coupled via SQS
and MVC App component-based architecture. (PS: Failover take action via ELB to
another EC2 instance or AZ, DB failover to another AZ, Auto Scale takes care of
redundancy (min-max). More work can be done, discussed in Future Work)

EC2 launch:

-Bootstrapped using initial layers included in AMI + applies chef recipes
concerning app configuration.

-Instance info is taken from simpleDB using domain queries when passing
secure AWS key/encrypted credentials and instance-specific parameters for the
EC2 instance, this also updates the instance status for the retrieved row.

-EC2 applies chef recipes and access S3 to create/get the latest .zip package.
-EC2 AMI is saved via incremental snapshots.

Cron jobs:

1-Scanrio 1: Updating tenants

-Run update tenant job to populate a certain change in database via custom
script, which is a db-transparent migration command.

-This leverages the usage of SQS with spot instances bidding a bit more on on-
demand prices. Wait 5 mins before shifting to on-demand.

-Interruptions/Fault tolerance is taken into consideration since it is transaction
based changes and allows the usage of Queue/still alive check.

-simpleDB helps in passing tenant-specific configuration.

2-Scenario 2: Updating data-specific per tenant

eliematta.com



-Run daily cron jobs that will execute a job to update custom recommendations
for each tenant on a specific time per day.

-This leverages the usage of spot instances that runs a recommendation rating
algorithm based on Bayesian rating to update recommendations for each tenant.
-Interruptions/Fault tolerance is taken into consideration using Grid or Queue
architecture.

-simpleDB helps in passing tenant-specific configuration.

Deployment and Testing

-Setup the previous architecture to be formed in OpsWorks. (Pending, needs
more research)

-Deployment on test environment via commit to OpsWorks. (Pending, needs
more research)

-Deployment to production on all instances.

In case OpsWorks was not suitable, check Elastic BeansTalk or Do It Yourself as
follows:

-Have an EC2 on-demand/reserved small instance for testing that will have the
latest source code deployed from git/svn.

-In case of going live, the script generates a .zip package and deploys it in S3.
-The script lists all Auto-Scaling groups having running instances in all regions.
Search, stop, terminate and launch new instances (that will automatically take
the latest .zip package from S3 via bootstrapping) + update Elastic IPs

-QA is done using spot instances/on-demand.

-Testing/Continuous delivery via Jenkins and spot instances.

Cost:
~300%/month = 1 client, 1 region
~2000%/month = 50 clients, 1 region

Future work and amelioration:

-Consider using Elastic BeansTalk for a more flexible on-demand
production/development environment that manages versioning. Deploys
automatically on commit and manages internally: Auto Scaling, ELB and EC2
instances.

-Consider using OpsWorks that can make the maintenance easier of the whole
process while giving direct access to chef recipes for more bootstrapping
capabilities.

-Consider using Data Pipeline when it is available in all regions to be used in
case of DR backup from one region to another. (compared with corn jobs with
SQS or SWF)

-Consider using VPC with public and private subnets for keeping the
application and database servers not accessible directly from the Internet, while
still being able to be accessed via NAT for patches, ...

-Consider dividing tiers physically between Web server and App server for more
security/scalability /loosely-coupled concerns.

-Consider Disaster Recovery and leverage the fact of copying EBS between
regions, this requires setting up a special script that dumps data and save it to

eliematta.com



another volume in another region. Also transferring clients to another region in
case of DR and creating DBs based on those snapshots.
-Using MapReduce/Hbase for recommendations system for a faster result.

eliematta.com



