
UUNNIIVVEERRSSIITTÉÉ AANNTTOONNIINNEE
Faculté d’ingénieurs en Informatique,

Multimédia, Réseaux et Télécommunications

Course: Applications avancées avec C#

 Presented by:

Copyright © 2010-2011, eliematta.com. All rights reserved

Elie Matta et al.

Document 2 – Examples and Implementations

http://www.eliematta.com/

Prepared by Elie Matta et al.

Copyright © 2010-2011, eliematta.com. All rights reserved | Page 1

Table of Contents
Introduction ... 3

Example 1 – The DNS ... 4

A.Introduction ... 4

B..NET Framework Configuration .. 4

a.Creating a new permission set... 4

b.Creating a new code group .. 6

c.Exclusive and LevelFinal ... 8

C.Code ... 9

D.Implementation ... 9

Example 2 – Registry .. 11

A.Introduction ... 11

B.Codes ... 11

a.classmain ... 12

b.Button #1 ... 12

c.Button #2 ... 12

d.Button #3 ... 12

C.Implementation ... 13

i.Scenario 1 ... 13

ii.Scenario 2 .. 13

iii.Scenario 3 ... 14

Example 3 – Environnement variables .. 16

A.Introduction ... 16

B.Code ... 16

C.Configuration .. 17

D.Implementation ... 19

Example 4 – User Interface ... 23

B.Code ... 24

C.Implementation ... 25

Example 5 – Web access .. 27

A.Introduction ... 27

Prepared by Elie Matta et al.

Copyright © 2010-2011, eliematta.com. All rights reserved | Page 2

B..NET Framework Configuration .. 27

Modifying permission set .. 27

C.Code ... 30

D.Implementation ... 31

Example 6 – Printing ... 32

A.Introduction ... 32

B..NET Framework Configuration .. 32

Modifying permission set .. 32

C.Code ... 35

D.Implementation ... 35

Example 7 – The active directory .. 37

A.Introduction ... 37

B..NET Framework Configuration .. 37

a.Creating a new permission set... 37

b.Creating a code group ... 40

C.Code ... 43

D.Implementation ... 43

Note: .. 45

Prepared by Elie Matta et al.

Copyright © 2010-2011, eliematta.com. All rights reserved | Page 3

QQuueessttiioonn 55

IInnttrroodduuccttiioonn

After reading the security .NET framework security, it is time now to explore all the
theory in detailed examples separated as follows:

1) The DNS
2) Registry
3) The environment variables
4) User interface
5) Web access
6) Printing
7) The directory service

Two tools shipped with the .NET Framework SDK allow us to configure security:
CASpol.exe(Code Access Security Policy Tool) and MSCorCfg.msc (.NET
Configuration Tool). The first is a command-line utility, the second a Microsoft
Management Console (MMC) snap-in. The graphical user interface of the MSCorCfg
MMC snap-in is easier to use and allows you to visualize the overall security
configuration more readily. CASpol is quicker and can be used in scripts or batch files.
We will use one of the two tools each time we want to configure our implementation.
The namespace System.Security.Permissions will be included is in most of our
examples.
Please note that we separated this implementation to seven examples to give each
example a clearer step by step implementation at each and every example; We could
have managed to enclose all of them in one single application with seven buttons
testing the seven different permissions.

Prepared by Elie Matta et al.

Copyright © 2010-2011, eliematta.com. All rights reserved | Page 4

EExxaammppllee 11 –– TThhee DDNNSS

SSoouurrccee ccooddee ppaatthh:: EExxaammpplleess//EExxaammppllee11//ddnnsstteesstt
UUssiinngg ssttrroonngg nnaammee –– DDeeccllaarraattiivvee sseeccuurriittyy

AA.. IInnttrroodduuccttiioonn

Our example consist of demanding simple permission to resolve www.google.com
website, we will assign our program to a new permission of our creation and a code
group.
We will use a Console application which we will add on it two namespaces: System.Net
and System.Security.

BB.. ..NNEETT FFrraammeewwoorrkk CCoonnffiigguurraattiioonn

In this example we will use the .NET Framework configuration tool to configure a new
permission and a new code group.

aa.. CCrreeaattiinngg aa nneeww ppeerrmmiissssiioonn sseett

Prepared by Elie Matta et al.

Copyright © 2010-2011, eliematta.com. All rights reserved | Page 5

Expand the Runtime Security Policy node. You can see the security policy levels -
Enterprise, Machine and User. We are going to change the security settings in Machine
policy. First we are going to create our own custom permission set. Right click the
Permission Sets node and choose New. We will name it NewPermSet.

In the next figure, we can add permissions to our permission set. In the left panel, we
can see all the permissions supported by the .NET Framework. Now get the properties
of DNS permission. Set "Grant assemblies unrestricted access to DNS"

Prepared by Elie Matta et al.

Copyright © 2010-2011, eliematta.com. All rights reserved | Page 6

We should add also the Security permission to add the permission to execute the
code, by selecting security and then checking Enable assembly execution.

bb.. CCrreeaattiinngg aa nneeww ccooddee ggrroouupp

Now we will create a code group and set some conditions, so our assembly will be a
member of that code group. Notice that in the code groups node, All_Code is the
parent node. Right Click the All_Code node and choose New. You'll be presented with
the Create Code Group wizard. We are going to name it NewCodeGroup.

Prepared by Elie Matta et al.

Copyright © 2010-2011, eliematta.com. All rights reserved | Page 7

In the next figure, you have to provide a condition type for the code group. Now these
are the evidence that we mentioned in Document 1 – page 4. For this example, we are
going to use the Strong Name condition type. First, sign your assembly (by using
sn.exe per example or from the Visual studio by right-clicking on the project name,
properties, signing like in the figure below) with a strong name and build the project.

Back to the .NET configuration tool, now press the Import button then we select our
assembly. Public Key, Name and Version will be extracted from the assembly, so we
don't have to worry about them.

Now move on to the next figure. We have to specify a permission set for our code
group. Since we have already created one – NewPermSet, select it from the list box.

Prepared by Elie Matta et al.

Copyright © 2010-2011, eliematta.com. All rights reserved | Page 8

cc.. EExxcclluussiivvee aanndd LLeevveellFFiinnaall

If no one haven't messed around with the default .NET configuration security settings,
our assembly should already belong to another built-in code group -
My_Computer_Zone. When permissions are calculated, if a particular assembly falls
into more than one code group within the same policy level, the final permissions for
that assembly will be the union of all the permissions in those code groups. To calculate
permissions you should reference to the Document 1 – page 1, now we need to run our
assembly only with our permission set and that is NewPermSet associated with the
NewCodeGroup. So we have to set another property to do just that. Right click the
newly created MyCodeGroup node and select Properties. Check the check box saying
"This policy level will only have the permissions from the permission set
associated with this code group." This is called the Exclusive attribute. If this is
checked then the run time will never grant more permissions than the permissions
associated with this code group. The other option is called LevelFinal. These two
properties come into action when calculating permissions and they are explained in
Document 1 – page 13.

Prepared by Elie Matta et al.

Copyright © 2010-2011, eliematta.com. All rights reserved | Page 9

CC.. CCooddee

//Uses the DnsPermissionAttribute to restrict access only to those who have

permission.

 [DnsPermission(SecurityAction.Demand, Unrestricted = true)]

//Declarative security

 public class MyClass

 {

 public static IPAddress GetIPAddress()

 {

 IPAddress ipAddress =

Dns.Resolve("www.google.com").AddressList[0];

 return ipAddress;

 }

 public static void Main()

 {

 try

 {

 //Grants Access.

 Console.WriteLine(" Access granted\n The assigned IP

Address is :" +

MyClass.GetIPAddress().ToString());

 }

 // Denies Access.

 catch (SecurityException securityException)

 {

 Console.WriteLine("Access denied");

 Console.WriteLine(securityException.ToString());

 }}

DD.. IImmpplleemmeennttaattiioonn

It‘s time to run the code. What we have done so far is, we have put our code into a code
group and given unrestricted access to DNS. Run the code it should work fine, resolving
correctly the www.google.com website as shown below:

But if we changed the permission set for our NewPermSet setting the DNS permission
to Grant assemblies no access to DNS in the .NET configuration then we will have an
error:

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
10

When we run the code it will fail to load the DNS because it has no permission

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
11

EExxaammppllee 22 –– RReeggiissttrryy

IImmpplleemmeennttaattiioonn:: EExxaammpplleess//EExxaammppllee22//IImmpplleemmeennttaattiioonn
UUssiinngg ddeeccllaarraattiivvee sseeccuurriittyy –– XXMMLL ccoonnffiigguurraattiioonn ffiillee

AA.. IInnttrroodduuccttiioonn

A little reminder on the basics of the three levels to get started: ―Fully trusted‖ code can
do whatever the user can do (which might be limited if the user is not using a Windows
admin account). ―No trust‖ code can‘t do anything. Anything in between is called ―partial
trust.‖ Obviously, there are many degrees of partial trust – the code might have almost
no privileges at all, or it might be able to do everything except reading the registry or
something.
We also remind you that that there are three main ways of causing code to run with
partial trust:

1. If the assembly is loaded from a network share then it will run with the
―LocalIntranet‖ permission set (by default this enforces a number of restrictions
such as no registry, no file IO, limited reflection and so on, we will see this in our
example).

2. If your assembly refuses one or more permissions (per example you declare that
you don‘t want to be able to perform reflection) then your assembly is by
definition partially trusted.

3. You can configure your ASP.NET application to run with a particular trust level.
This is defined in config files; ―medium trust‖ means no registry, no reflection, no
file IO outside your app‘s virtual directory.

Notice that an assembly might be fully trusted or partially trusted depending on the
runtime circumstances. The assembly might be fully trusted if loaded from the C: drive,
but will be partially trusted if loaded from a network share.

Next, a couple of handy definitions:
Caller – Code that calls other code
Callee – Code that is called by other code
So if method ClientMethod() calls method ServerMethod() then ClientMethod is the
caller and ServerMethod is the callee.
If the calling method (the caller) is in an assembly that is running with partial trust then it
is a ―partially trusted caller.‖ In this case, if the callee‘s assembly does not have the
AllowPartiallyTrustedCallers (APTC) attribute then the called code will not run –
regardless of the trust level of the callee‘s assembly. You will get an exception.

BB.. CCooddeess

The example has two strongly named assemblies: PartialTrustTest.exe and
PartialTrustTestLib.dll. There is also a config file called PartialTrustTest.exe.config that
is needed for one of the scenarios.

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
12

aa.. ccllaassssmmaaiinn
public class classmain

 {

 public static void TestRegistryAccess()

 {

 RegistryKey test = Registry.LocalMachine;

 test.OpenSubKey("Software", true);

 }

 [RegistryPermission(SecurityAction.Assert,

 Unrestricted = true)] //Declarative security

 public static void AssertRegistryPermissionAndTestAccess()

 {

 RegistryKey test = Registry.LocalMachine;

 test.OpenSubKey("Software", true);

 }

 }

bb.. BBuuttttoonn ##11
RegistryKey localMachine = Registry.LocalMachine;

 try

 {

 localMachine.OpenSubKey("Software", true);

 MessageBox.Show("Registry key was opened", "Partial Trust

Test", MessageBoxButtons.OK, MessageBoxIcon.Asterisk);

 }

 catch (SecurityException exception)

 {

 MessageBox.Show("Can't open registry key: " +

exception.Message + "; stack = " + exception.StackTrace, "Partial Trust

Test", MessageBoxButtons.OK, MessageBoxIcon.Exclamation);

 }

cc.. BBuuttttoonn ##22
try

 {

 classmain.TestRegistryAccess();

 MessageBox.Show("Registry key was opened", "Partial Trust

Test", MessageBoxButtons.OK, MessageBoxIcon.Asterisk);

 }

 catch (SecurityException exception)

 {

 MessageBox.Show("Can't open registry key: " +

exception.Message + "; stack = " + exception.StackTrace, "Partial Trust

Test", MessageBoxButtons.OK, MessageBoxIcon.Exclamation);

 }

dd.. BBuuttttoonn ##33
try

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
13

 {

 classmain.AssertRegistryPermissionAndTestAccess();

 MessageBox.Show("Registry key was opened", "Partial Trust

Test", MessageBoxButtons.OK, MessageBoxIcon.Asterisk);

 }

 catch (SecurityException exception)

 {

 MessageBox.Show("Can't open registry key: " +

exception.Message + "; stack = " + exception.StackTrace, "Partial Trust

Test", MessageBoxButtons.OK, MessageBoxIcon.Exclamation);

 }

CC.. IImmpplleemmeennttaattiioonn

ii.. SScceennaarriioo 11

Start by placing all the files together in a directory on your C: drive and running the exe.
You will see a form with three buttons. They all do the same thing: they try to read the
registry. The only difference is in the methods that they use to call the
RegistryKey.OpenSubKey method:

1. Read the registry (local assembly) – calls a method in the EXE
2. Read the registry (from PartialTrustTestLib) – calls a method in the DLL (see

code at bottom of email)
3. Read the registry after asserting permission (from PartialTrustTestLib) – calls

a method in the DLL that asserts the right to read the registry (I‘ll explain this
below, but note that it has nothing to do with the Asserts used in testing)

Click each of the buttons in turn; you should find that they all work fine. This is because
both assemblies are fully trusted.

iiii.. SScceennaarriioo 22

Move the DLL to a network drive – let‘s call that the U: drive and ensure you delete it
from the C: drive so that we can be sure which one is being loaded.

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
14

Open PartialTrustTest.exe.config in Notepad and uncomment the line.
Replace my username (Vista) with yours in the href attribute.
Now run the EXE.

Button 1 is still OK, but the other two buttons throw a SecurityException. This is
because the DLL is now running with the LocalIntranet permission set and as such it
can‘t read the registry.
The APTC attribute is not relevant here because the caller is fully trusted (it is the callee
that is partially trusted).

iiiiii.. SScceennaarriioo 33

This is the most interesting one. To set up this scenario, follow these steps:
1. Delete PartialTrustTest.exe.config
2. Move the EXE to your network drive (U: drive)
3. Move the DLL back to your C: drive
4. Open the .NET Framework 2.0 Configuration utility and add the DLL to your

Global Assembly Cache (GAC) or use the cmd: gacutil.exe /i
PartialTrustTestLib.dll

5. Now run the EXE

Note that the DLL has the APTC attribute, which it needs here because the exe is no
longer running with full trust.

Button 1 fails, because the EXE is now running with the LocalIntranet permission set.

Button 2 fails. Why? The DLL is now fully trusted (it is in the GAC and it doesn‘t refuse
any permissions). But the EXE does not have RegistryPermission. This is an example
of tempting (the unprivileged EXE asks the privileged DLL to ask the .NET Framework).

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
15

To prevent this, the RegistryKey.OpenSubKey method demands that all its callers have
RegistryPermission. This demand causes the CLR to do a ‗stack walk‘, checking that
each caller in the stack has the required permission.

Button 3 succeeds. This is because it calls a method in the DLL that ‗asserts‘
RegistryPermission.

Notice that the assertion didn‘t help in scenario 2, because the DLL didn‘t have
RegistryPermission.

To summarise:

Scenario EXE DLL Btn 1 Btn 2 Btn 3

1
C:
drive

C: drive OK OK OK

2
C:
drive

U: drive OK
Fails – callee
doesn‘t have
RegistryPermission

Fails – callee
doesn‘t have
Registry
Permission

3
U:
drive

GAC
Fails – callee
doesn‘t have
RegistryPermission

Fails – stack walk
discovers that EXE
doesn‘t have
RegistryPermission

OK – DLL asserts
RegistryPermission

Using CAS correctly involves ensuring that your code can‘t be used maliciously. Our
DLL allows partially trusted callers and one of its methods asserts RegistryPermission.
Once that DLL is installed in the GAC these two settings lower the security bar
considerably. Any assembly that can run on our CLR can load our DLL and use our
method to read the registry. Before adding the assertion we should (a) check our
method carefully to make sure it can‘t be used maliciously, and/or (b) apply extra
restrictions to our method. The easiest way to restrict the method is to add a Demand to
the method. This is where we demand that the callers meet a certain requirement (not
the same one that we‘re asserting, obviously – if they have that then there‘s no point in
asserting it)

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
16

EExxaammppllee 33 –– EEnnvviirroonnnneemmeenntt vvaarriiaabblleess

SSoouurrccee ccooddee ppaatthh:: EExxaammpplleess//EExxaammppllee33//eennvvaarrtteesstt
UUssiinngg XXMMLL ccoonnddiittiioonn ffiillee –– IImmppeerraattiivvee sseeccuurriittyy

AA.. IInnttrroodduuccttiioonn

In this example, we will use the CASpol.exe tool to implement our work:
The test assembly we‘ll use is a simple Windows Forms application with a button and a
text box. When the user clicks the button, the application demands two arbitrary security
permissions, one after the other: a File IO permission to read the C:\Windows directory,
and an Environment permission to read the USERNAME environment variable. If a
demand succeeds, a simple message is added to the text box. If either demand fails—
that is, if the assembly isn‘t granted the requested permission—the corresponding error
string is added to the text box instead:

BB.. CCooddee

And in the button:

private void btnTestPerms_Click(object sender, EventArgs e)

 {

 try

 {

 FileIOPermission p = new FileIOPermission(

 FileIOPermissionAccess.Read, "C:\\WINNT");

 p.Demand();

 textBox1.Text += "FileIOPermission OK\r\n";

 }

 catch (Exception ex)

 {

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
17

 textBox1.Text += ex.Message + "\r\n";

 }

 try

 {

 EnvironmentPermission p = new EnvironmentPermission(

 EnvironmentPermissionAccess.Read, "USERNAME");

 p.Demand();

 textBox1.Text += "EnvironmentPermission OK\r\n";

 }

 catch (Exception ex)

 {

 textBox1.Text += ex.Message + "\r\n";

 }

 }

To create a permission set with CASpol, we first need to create an XML file detailing the
individual permissions we want (elie.xml):

<PermissionSet class="NamedPermissionSet"
 version="1"
 Name="ElieTest"
 Description="Permission set containing my custom permission">
 <IPermission class=
 "System.Security.Permissions.EnvironmentPermission"
 Read="USERNAME"/>
 <IPermission class=
 "System.Security.Permissions.FileIOPermission"
 Read="C:\Windows"/>
 <IPermission class=
 "System.Security.Permissions.SecurityPermission"
 Flags="Execution"/>
 <IPermission class=
 "System.Security.Permissions.UIPermission"
 Unrestricted="true"/>
</PermissionSet>

The <PermissionSet> root element must be present and has a class attribute with the
value NamedPermissionSet or System.Security.NamedPermissionSet. For this version
of the .NET Framework, the version attribute is 1. The Name attribute is the name of the
permission set as it appears in the MSCorCfg tree list, and the Description attribute is
any arbitrary description of the permission set, which appears in the MSCorCfg right-
hand pane. The <PermissionSet> element can contain any number of <IPermission>
elements, which represent the permissions in the permission set—these can be
Framework library classes or custom permission classes.

CC.. CCoonnffiigguurraattiioonn

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
18

Now we can start applying the XML as a first step to the security policy in one of two
ways. The first approach uses MSCorCfg: select the Permission Sets node for the
policy level you want (in this case Machine), and click the Create New Permission Set
link. Select the Import a permission set from an XML file option and we specified the
path to the XML file containing the permissions, as shown in this figure:

Using CASpol instead, you use this command line:

caspol -machine -addpset elie.xml

where –machine indicates the policy level to add the permission set to, and elie.xml is
the file containing the required permissions. CASpol will prompt to make sure you want
to proceed—enter Y to confirm. Whichever way you‘ve set up these permissions, you
can now examine them in MSCorCfg. (You might need to close and reopen MSCorCfg
before the changes are displayed.) You can also list the permissions with this CASpol
command line:

caspol -machine -listpset

This command will produce a listing of all permission sets for the specified policy level.
Somewhere in the middle of this list we should recognize your custom permission set:

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
19

8. ElieTest (Permission set containing my custom permission) =
<PermissionSet class="System.Security.NamedPermissionSet" version="1"
Name="ElieTest" Description="Permission set containing my custom permission">
 <IPermission class="System.Security.Permissions.EnvironmentPermission, mscorlib,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" version="1"
Read="USERNAME" />
 <IPermission class="System.Security.Permissions.FileIOPermission, mscorlib,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" version="1"
Read="C:\Windows" />
 <IPermission class="System.Security.Permissions.SecurityPermission, mscorlib,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" version="1"
Flags="Execution" />
 <IPermission class="System.Security.Permissions.UIPermission, mscorlib,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" version="1"
Unrestricted="true" />
</PermissionSet>

The second operation is to add a new code group, including its membership condition
and permission set. In the following command, All_Code is the parent code group to
which we want to add a new child, the membership condition is a specified file URL, the
permission set is ElieTest, the new code group will be named Elie_Group, and we want
this to apply exclusively:

caspol -addgroup All_Code -url file://C:/environmentpermtest/* ElieTest -n
Elie_Group -exclusive on

We created the C:\environmentpermtest directory to test it in our implementation.

DD.. IImmpplleemmeennttaattiioonn

Build and test the application as is before making any coding or security configuration
changes

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
20

Now to test the application. From Windows Explorer, copy the envartest.exe assembly
into the newly configured C:\environmentpermtest directory and double-click it to run it
from there. At this stage, everything should run as before, with all permission requests
granted. For the second test, in the MSCorCfg snap-in, select the Elie_Group code
group and click the Edit Code Group Properties link. From the dialog box, select the
Permission Set tab and change the permission set for this code group to, say,
LocalIntranet. Then click OK.

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
21

We‘ll obtain the following when we try to run envartest.exe from C:\environmentpermtest

Now try to run the application again: you should find that although the application still
executes and the request for the specific Environment permission succeeds, the
request for File IO permission fails. Change the permission set again, this time to
Internet. This time, although the application executes, the runtime presents an alert
message (shown in the figure below) indicating that the assembly is running in a
partially trusted security context and warning you that some functionality might not be
available.
You can click the alert message to remove it. Indeed, when you click the Test button,
you‘ll find that neither of the requested permissions has been granted.

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
22

If we make one final test and change the permission set to Nothing, we‘ll find that the
application won‘t even execute and the runtime will throw an exception. To round out
your understanding of the various predefined permission sets (as well as any custom
sets we‘ve set up), we could experiment with replacing the permission requests as
indicated in the following code, first to AllAccess for the root of C:\, and then to
PermissionState.Unrestricted:

FileIOPermission p = new FileIOPermission(

//FileIOPermissionAccess.Read, "C:\\Windows");

//FileIOPermissionAccess.AllAccess, "C:\\");

PermissionState.Unrestricted);

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
23

EExxaammppllee 44 –– UUsseerr IInntteerrffaaccee

SSoouurrccee ccooddee ppaatthh:: EExxaammpplleess//EExxaammppllee44//uuiippeerrmmsseett
UUssiinngg UURRLL –– IImmppeerraattiivvee sseeccuurriittyy

AA.. IInnttrroodduuccttiioonn

In this example we will test the UIPermission with both FileIOPermission and
RegistryPermission to test respectively the behavior of our window, the access to our
local drives and to our registry.
We should first define the type of windows that our code is allowed to use, defined in
this table:

 Member name Description

AllWindows Users can use all windows and user input events without
restriction.

NoWindows Users cannot use any windows or user interface events. No user
interface can be used.

SafeSubWindows Users can only use SafeSubWindows for drawing, and can only
use user input events for user interface within that subwindow.
Examples of SafeSubWindows are a MessageBox, common
dialog controls, and a control displayed within a browser.

SafeTopLevelWindows  Users can only use SafeTopLevelWindows and
SafeSubWindows for drawing, and can only use user
input events for the user interface within those top-level
windows and subwindows.

 When it runs under SafeTopLevelWindows permission,
your application:

 Will show the DNS name or IP address of the Web site
from which the application was loaded in its title bar.

 Will display Balloon tool-tip when it first displays,
informing the user that it is running under a restricted trust
level.

 Must display its title bar at all times.

 Must display window controls on its forms.

 Cannot minimize its main window on startup.

 Cannot move its windows off-screen.

 Cannot use the Opacity property on Form to make its
windows less than 50% transparent.

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
24

 Must use only rectangular windows, and must include the
window frame. Windows Forms will not honor setting
FormBorderStyle to None.

 Cannot make windows invisible. Any attempt by the
application to set the Visible property on its Form objects
to False will be ignored.

 Must have an entry in the Task Bar.

 Will have its controls prohibited from accessing the Parent
property. By implication, controls will also be barred from
accessing siblings - i.e., other controls at the same level
of nesting.

 Cannot control focus using the Focus method.

 Will have restricted keyboard input access, so that a form
or control can only access keyboard events for itself and
its children.

 Will have restricted mouse coordinate access, so that a
form or control can only read mouse coordinates if the
mouse is over its visible area.

 Cannot set the TopMost property.

 Cannot control the z-order of controls on the form using
the BringToFront and SendToBack methods.

 These restrictions help prevent potentially harmful code
from spoofing attacks, such as imitating trusted system
dialogs.

BB.. CCooddee
class MainClass

 {

 public static void Main()

 {

 RegistryPermission f = new

RegistryPermission(RegistryPermissionAccess.Read,

"HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0");

 if (f.IsUnrestricted())

 Console.WriteLine("Unrestricted Access allowed");

 else

 Console.WriteLine("Unrestricted Access DENIED");

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
25

 FileIOPermission fileIO = new

FileIOPermission(PermissionState.None);

 Console.WriteLine("All Local files read access: {0}",

FileIOPermissionAccess.Read);

 Console.WriteLine("All Local files write access: {0}",

FileIOPermissionAccess.Write);

 UIPermission ui = new

UIPermission(UIPermissionWindow.AllWindows,

UIPermissionClipboard.AllClipboard);

 if (ui.IsUnrestricted())

 Console.WriteLine("UI Unrestricted Access allowed");

 else

 Console.WriteLine("UI Unrestricted Access DENIED");

 }

 }}

CC.. IImmpplleemmeennttaattiioonn

After running the code in a console application, we will have a result like this:

That‘s because we are running the code while grating access to see and use the
window normally but we don‘t have permission to the required registry path.
If we simply change the UIPermissionWindow to NoWindows then we‘ll obtain:

Now if we put the uipermtest.exe in the C:\environmentpermtest while changing the
Elie_Group permission to Nothing:

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
26

The code will fail to start and an exception will be raised:

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
27

EExxaammppllee 55 –– WWeebb aacccceessss

SSoouurrccee ccooddee ppaatthh:: EExxaammpplleess//EExxaammppllee55//wweebbaacccctteesstt
UUssiinngg ssttrroonngg nnaammee –– IImmppeerraattiivvee sseeccuurriittyy

AA.. IInnttrroodduuccttiioonn

Our example consist of connecting and accepting webpermissions to google.com,
msn.com and yahoo.com.
We will use regular expressions, also referred to as regex to provide a concise and
flexible means for matching strings of text in this case on www.google.com, and
IEnumerator for a simple iteration over a collection.
We will use a Console application adding the System.Text.RegularExpressions,
System.Net and System.Collections namespaces.

BB.. ..NNEETT FFrraammeewwoorrkk CCoonnffiigguurraattiioonn
In this part we will use the permission set NewPermSet and code group
NewCodeGroup already used in Example 1.

MMooddiiffyyiinngg ppeerrmmiissssiioonn sseett

Expand the Runtime Security Policy node. You can see the security policy levels -
Enterprise, Machine and User. We are going to change the security settings in Machine
policy. We will add the Security and Web access and grant it unrestricted access
because we will control it in the code.

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
28

Security:

For this example, we are going to use the Strong Name condition type. First, sign your
assembly (by using sn.exe per example or from the Visual studio by right-clicking on the
project name, properties, signing) with a strong name and build the project.

Back to the .NET configuration tool, now press the Import button and select your
assembly. Public Key, Name and Version will be extracted from the assembly.

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
29

Now move on to the next figure. We have to specify a permission set for our code
group. Since we have already created one – NewPermSet, select it from the list box.

Now we will go to .NET configuration and set the option “This policy level will only
have the permissions from the permission set associated with this code group”

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
30

CC.. CCooddee

// Create a Regex that accepts all URLs containing the host fragment

www.google.com.

 Regex myRegex = new Regex(@"http://www\.google\.com/.*");

 // Create a WebPermission that gives permissions to all the hosts

containing the same host fragment.

 WebPermission myWebPermission = new

WebPermission(NetworkAccess.Connect, myRegex);

 //Add connect privileges for a www.msn.com.

 myWebPermission.AddPermission(NetworkAccess.Connect,

"http://www.msn.com");

 //Add accept privileges for www.yahoo.com.

 myWebPermission.AddPermission(NetworkAccess.Accept,

"http://www.yahoo.com/");

 // Check whether all callers higher in the call stack have been

granted the permission.

 myWebPermission.Demand();

 // Get all the URIs with Connect permission.

 IEnumerator myConnectEnum = myWebPermission.ConnectList;

 Console.WriteLine("\nThe 'URIs' with 'Connect' permission are

:\n");

 while (myConnectEnum.MoveNext())

 { Console.WriteLine("\t" + myConnectEnum.Current); }

 // Get all the URIs with Accept permission.

 IEnumerator myAcceptEnum = myWebPermission.AcceptList;

 Console.WriteLine("\n\nThe 'URIs' with 'Accept' permission is

:\n");

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
31

 while (myAcceptEnum.MoveNext())

 { Console.WriteLine("\t" + myAcceptEnum.Current); }

DD.. IImmpplleemmeennttaattiioonn

It‘s time to run the code. What we have done so far is, we have put our code into a code
group and given unrestricted access to Web Access. Run the code it should work fine,
giving access to www.google.com/* which is everything that follows www.google.com
and accepts connection from www.yahoo.com:

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
32

EExxaammppllee 66 –– PPrriinnttiinngg

SSoouurrccee ccooddee ppaatthh:: EExxaammpplleess//EExxaammppllee66//pprriinntttteesstt
UUssiinngg ssttrroonngg nnaammee –– DDeeccllaarraattiivvee sseeccuurriittyy

AA.. IInnttrroodduuccttiioonn

Our example consist of demanding printing permission to print a document by a default
printer, we will also use permission flags like RequestMinimum explained in Document 1
– page 5
We will use a Windows Form Application which we will add on it two namespaces:
System.Drawing.Printing and System.Security.Permissions.
First there are essential types of access that we can allow to our code which are:

 AllPrinting – Provides full access to all printers.

 DefaultPrinting – Provides printing programmatically to the default printer, along
with safe printing through showing a less restricted dialog box. DefaultPrinting is
a subset(a subset is a set contained with another set) of AllPrinting.

 NoPrinting – Prevents access to printers. NoPrinting is a subset of SafePrinting.

 SafePrinting - Provides printing only from showing a restricted dialog box.
SafePrinting is a subset of DefaultPrinting.

BB.. ..NNEETT FFrraammeewwoorrkk CCoonnffiigguurraattiioonn
In this part we will use the permission set NewPermSet and code group
NewCodeGroup already used in Example 1.

MMooddiiffyyiinngg ppeerrmmiissssiioonn sseett

Expand the Runtime Security Policy node. You can see the security policy levels -
Enterprise, Machine and User. We are going to change the security settings in Machine
policy. We will add the Security, User Interface and grant it unrestricted access, we will
also add Printing with permission: Default Printing :

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
33

For this example, we are going to use the Strong Name condition type. This time we
will sign the assembly by using cmd (Command Prompt) by typing the following
command in the correct path:

sn.exe –k ―path\nameofthekey.snk‖

In our case:
sn.exe -k "E:\Lilo\UPA\Quatrieme annee\Premier semestre (S7)\Application
avancee avec C#\C# project\Document\Examples\example6\newprintkey.snk”

A key is generated, but it is not yet associated with the assembly of the project. To
create this association, double-click the AssemblyInfo.cs file in Visual Studio .NET
Solution Explorer. This file has the list of assembly attributes that are included by default
when a project is created in Visual Studio .NET. Modify the AssemblyKeyFile
assembly attribute in the code as follows:
[assembly: AssemblyDelaySign(false)]

[assembly: AssemblyKeyFile("E:\\Lilo\\UPA\\Quatrieme annee\\Premier semestre

(S7)\\Application avancee avec C#\\C#

project\\Document\\Examples\\example6\\newprintkey.snk")]

[assembly: AssemblyKeyName("")]

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
34

Compile the project by clicking CTRL+SHIFT+B. You do not have to have any additional
code to install a .dll file in the GAC.

Back to the .NET configuration tool, now press the Import button and select your
assembly. Public Key, Name and Version will be extracted from the assembly.

Now move on to the next figure. We have to specify a permission set for our code
group. Since we have already created one – NewPermSet, select it from the list box.

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
35

Now we will go to .NET configuration and set the option “This policy level will only
have the permissions from the permission set associated with this code group”

CC.. CCooddee

In the AssemblyInfo.cs:
[assembly: PrintingPermission(SecurityAction.RequestMinimum,Level =

PrintingPermissionLevel.DefaultPrinting)]

BBuuttttoonn ##11::
try

 {

 PrintDocument mydoc = new PrintDocument();

 mydoc.Print();

 MessageBox.Show("This code can print");

 }

 catch (Exception ex)

 {

 MessageBox.Show("This code cannot print because "

+ex.Message);

 }

DD.. IImmpplleemmeennttaattiioonn

It‘s time to run the code. What we have done so far is, we have put our code into a code
group and given unrestricted access to User Interface and Security. Run the code it
should work fine, printing a document by the default printer, in our case the default
printer is to send the document to Microsoft Office OneNote:

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
36

On the other hand, if we go back to .NET configuration tool and change the printing
permission to No Printing, we will have an error as soon as we try to runt the code
because we don‘t have the minimum permission to run the code and to print.

The error:

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
37

EExxaammppllee 77 –– TThhee aaccttiivvee ddiirreeccttoorryy

SSoouurrccee ccooddee ppaatthh:: EExxaammpplleess//EExxaammppllee77//aaddtteesstt
UUssiinngg ppuubblliisshheerr –– IImmppeerraattiivvee sseeccuurriittyy

AA.. IInnttrroodduuccttiioonn

Our example consist of connecting to the active directory on our computer and listing all
the users that belongs to the administrators group.
We will use IEnumerator for a simple iteration over a collection.
We will also have to add the System.DirectoryServices namespace manually if it doesn‘t
exist, as shown in the figure below:

BB.. ..NNEETT FFrraammeewwoorrkk CCoonnffiigguurraattiioonn
In this part we will use a new code group ADCodeGroup and a new permission set
ADPermSet.

aa.. CCrreeaattiinngg aa nneeww ppeerrmmiissssiioonn sseett

We will add the Security, User Interface and Environment variables and grant them
unrestricted access to be able to bring the names of the administrators, and we will add
the Directory Services with path “WinNT://Vista,Computer” to browse through the
active directory as shown in the next figure:

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
38

For this example, we are going to sign the certificate and import it to the publisher in
.NET framework. First, we will sign our assembly by the ClickOnce manifests (from the
Visual studio by right-clicking on the project name, properties, signing) by creating a test
certificate.

Then we will have to enter a password, we‘ve put: mynewpass

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
39

Note that as from now on the certificate has been created as we can notice the (none)
fields has been replaced by the newly created certificate:

Then, click on the More Details button and then click on the install certificate:

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
40

Click on next, then you should choose the Place all certificate in the following store and
click Browse then select ―Trusted Root Certification Authorities‖ to sign properly this
certificate to a high level. Finally click on finish, you might have this security warning
that tells you that a newly certificate has been added to the root certification list and it is
not trusted by Microsoft:

Click on yes, and the import should be successful.

bb.. CCrreeaattiinngg aa nneeww ccooddee ggrroouupp

Back to the .NET configuration tool, we will choose the Publisher for the condition type,
then click on Import from Signed file and choose the name of your project with an
extension: .vshost.exe as shown in the figure below:

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
41

The import should be successful and all the fields should be filled automatically:

Click on Next, and choose ADPermSet:

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
42

Now we will go to .NET configuration and set the option “This policy level will only
have the permissions from the permission set associated with this code group”

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
43

CC.. CCooddee

try

 {

 DirectoryServicesPermission dsp = new

DirectoryServicesPermission(DirectoryServicesPermissionAccess.Browse,

"WinNT://" + Environment.MachineName + ",Computer");

 DirectoryEntry localmachine = new DirectoryEntry("WinNT://" +

Environment.MachineName + ",Computer");

 DirectoryEntry admgroup =

localmachine.Children.Find("administrators", "group");

 object members = admgroup.Invoke("members", null);

 foreach (object groupmember in (IEnumerable)members)

 {

 DirectoryEntry member = new DirectoryEntry(groupmember);

 textBox1.Text += "" + member.Name + "\r\n";

 }

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.Message);

 }}

DD.. IImmpplleemmeennttaattiioonn

It‘s time to run the code. What we have done so far is, we have put our code into a code
group and given unrestricted access to Security and User Interface and to Environment
variables, and to browse into the Directory Services. Run the code it should work fine
like shown in the next figure:

If we tried to modify the code to write into the active directory:

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
44

DirectoryServicesPermission dsp = new

DirectoryServicesPermission(DirectoryServicesPermissionAccess.Write,

"WinNT://" + Environment.MachineName + ",Computer");

Then we will have eventually an error:

Prepared by Elie Matta et al.

 Copyright © 2010-2011, eliematta.com. All rights reserved | Page
45

NNoottee::

You can at any time evaluate the assembly to check at which permission or code group

the selected assembly have, just follow the steps as shown in the figures below:

This is the evaluation of the adtest assembly:

